Genetic and Epigenetic Regulation of Interferon Regulatory Factor Expression: Implications in Human Malignancies

ثبت نشده
چکیده

Originally identified as regulators of the type I Interferon system, the nine mammalian members of the Interferon Regulatory Factor (IRF) family are transcriptional regulators with multiple biologic functions, among which the best known are those involved in initiating and regulating many aspect of host immunity, downstream pattern recognition receptors in response to cell injuries. In addition, these versatile proteins also regulate cell differentiation, cell growth and apoptosis in several cell types, and when mutated or disregulated significantly contribute to susceptibility to and progression of several cancers. IRF-1 is the most versatile member of the family, not essential for IFN gene expression and implicated in a variety of cellular functions spanning from the development and function of various immune cells to tumor suppression activity. IRF-3, IRF-7 and IRF-9 are more specifically involved in IFN induction and antiviral responses while IRF-5 is the regulator of inflammatory cytokines expression downstream pattern recognition receptors and IRF-6 is implicated in epithelial differentiation. IRF-8 as IRF-1 is considered a tumor suppressor gene, while IRF-2 and IRF-4 have generally oncogenic activity. The present review focuses principally on the current knowledge on IRF genetic characteristics, including mutations, polymorphisms and epigenetic regulation that are implicated in oncogenesis. Citation: Fragale A, Marsili G, Battistini A (2013) Genetic and Epigenetic Regulation of Interferon Regulatory Factor Expression: Implications in Human Malignancies. J Genet Syndr Gene Ther 4: 205. doi:10.4172/2157-7412.1000205

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-204: Evaluation of FMR1 Gene Regulatory Region for The Epigenetic Mark of H3K9 Acetylation in Blood Cells of Patients with Diminished Ovarian Reserve Reffered to Royan Institute

Background: Diminished ovarian reserve (DOR) is a heterogeneous disorder causing infertility, characterized by a decreased number of oocytes and high FSH level, the genetic cause of which is still unknown. The association between FMR1 premutations(50-200 CGG repeats) and the premature ovarian failure( POF) disease has suggested that FMR1 gene acts as a risk factor for POF and recently for DOR p...

متن کامل

P-88: Comparing Epigenetic Profile of Oct4 Regulatory Region in Embryonal Carcinoma Cells under Retinoic Acid Induction

Background: Embryonal carcinoma (EC) cells derived from germ cell tumors are valuable tools for investigating differentiation and developmental biology processes in vitro. The advantage of the reproducible and rapid expansion of these cell lines provides a useful alternative to embryos for the study of mammalian cell differentiation. During early stages of cell differentiation, the rate of tran...

متن کامل

I-13: Transcriptome Dynamics of Human and Mouse Preimplantation Embryos Revealed by Single Cell RNA-Sequencing

Background: Mammalian preimplantation development is a complex process involving dramatic changes in the transcriptional architecture. However, it is still unclear about the crucial transcriptional network and key hub genes that regulate the proceeding of preimplantation embryos. Materials and Methods: Through single-cell RNAsequencing (RNA-seq) of both human and mouse preimplantation embryos, ...

متن کامل

HDAC Inhibitors and Heat Shock Proteins (Hsps)

Epigenetic alterations, including DNA acetylation, hypermethylation and hypomethylation, and the associated transcriptional changes of the affected genes are central to the evolution and progression of various human cancers, including pancreatic cancer. Cancer-associated epigenetic alterations are attractive therapeutic targets because such epigenetic alterations, unlike genetic changes, are po...

متن کامل

بیان ژن MALAT1 بعنوان یک نشانگر زیستی جدید در بیولوژی سرطان

Background & Aim: Long non-coding RNAs are regulatory molecules that adjust many vital intracellular processes. MALAT1 is a long non-coding RNA playing a key role in the regulation of intracellular important processes and also involved in biology of various cancers. The purpose of this study was to investigate the functions of MALAT1 and overview of its role in cancer biology. Methods: in this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014